Novel hyper-heuristics applied to the domain of bin packing
نویسنده
چکیده
Principal to the ideology behind hyper-heuristic research is the desire to increase the level of generality of heuristic procedures so that they can be easily applied to a wide variety of problems to produce solutions of adequate quality within practical timescales. This thesis examines hyper-heuristics within a single problem domain, that of Bin Packing where the benefits to be gained from selecting or generating heuristics for large problem sets with widely differing characteristics is considered. Novel implementations of both selective and generative hyper-heuristics are proposed. The former approach attempts to map the characteristics of a problem to the heuristic that best solves it while the latter uses Genetic Programming techniques to automate the heuristic design process. Results obtained using the selective approach show that solution quality was improved significantly when contrasted to the performance of the best single heuristic when applied to large sets of diverse problem instances. Although enforcing the benefits to be gained by selecting from a range of heuristics the study also highlighted the lack of diversity in human designed algorithms. Using Genetic Programming techniques to automate the heuristic design process allowed both single heuristics and collectives of heuristics to be generated that were shown to perform significantly better than their human designed counterparts. The thesis concludes by combining both selective and generative hyper-heuristic approaches into a novel immune inspired system where heuristics that cover distinct areas of the problem space are generated. The system is shown to have a number of advantages over similar cooperative approaches in terms of its plasticity, efficiency and long term memory. Extensive testing of all of the hyper-heuristics developed on large sets of both benchmark and newly generated problem instances enforces the utility of hyper-heuristics in their goal of producing fast understandable procedures that give good quality solutions for a range of problems with widely varying characteristics.
منابع مشابه
Ant-Q Hyper Heuristic Approach applied to the Cross- domain Heuristic Search Challenge problems
The first Cross-domain Heuristic Search Challenge (CHeSC 2011) is an international research competition aimed at measuring hyperheuristics performance over several problem domains. Hyper-heuristics are new approaches which aim at raising the level of abstraction when solving combinatorial optimisation problems. During this competition, we have applied the Ant-Q hyper-heuristic approach, propose...
متن کاملA genetic programming hyper-heuristic approach to automated packing
This thesis presents a programme of research which investigated a genetic programming hyper-heuristic methodology to automate the heuristic design process for one, two and three dimensional packing problems. Traditionally, heuristic search methodologies operate on a space of potential solutions to a problem. In contrast, a hyper-heuristic is a heuristic which searches a space of heuristics, rat...
متن کاملA study of evolutionary algorithm selection hyper-heuristics for the one-dimensional bin-packing problem
Hyper-heuristics are aimed at providing a generalized solution to optimization problems rather than producing the best result for one or more problem instances. This paper examines the use of evolutionary algorithm (EA) selection hyper-heuristics to solve the offline one-dimensional bin-packing problem. Two EA hyper-heuristics are evaluated. The first (EA-HH1) searches a heuristic space of comb...
متن کاملLearning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics
The idea underlying hyper-heuristics is to discover some combination of familiar, straightforward heuristics that performs very well across a whole range of problems. To be worthwhile, such a combination should outperform all of the constituent heuristics. In this paper we describe a novel messy-GA-based approach that learns such a heuristic combination for solving one-dimensional bin-packing p...
متن کاملLearning to Solve Bin Packing Problems with an Immune Inspired Hyper-heuristic
Motivated by the natural immune system’s ability to defend the body by generating and maintaining a repertoire of antibodies that collectively cover the potential pathogen space, we describe an artificial system that discovers and maintains a repertoire of heuristics that collectively provide methods for solving problems within a problem space. Using bin-packing as an example domain, the system...
متن کامل